

    
      Navigation

      
        	
          index

        	Face 1.0 documentation 
 
      

    


    
      
          
            
  
Welcome to Face’s documentation!

Face is an ORM built under php5.4. It is aimed to be flexible and
to provide powerful features to abstract and normalize database interactions.

In the latest weeks face has known a lot of refactoring and a lot are on the way.

The doc was not relevant anymore and has been temporally closed until the new doc is written.

We plan the first stable release of face for end of 2015. Stay tuned !





          

      

      

    


    
         Copyright 2013, Soufiane GHZAL.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	Face 1.0 documentation 
 
      

    


    
      
          
            

Index



 




          

      

      

    


    
         Copyright 2013, Soufiane GHZAL.
      Created using Sphinx 1.3.5.
    

  _static/plus.png





_static/comment-close.png





_static/comment.png





_static/minus.png





_static/file.png





_static/up-pressed.png





_static/comment-bright.png





_static/down-pressed.png





_static/ajax-loader.gif





references/overview.html


    
      Navigation


      
        		
          index


        		Face 1.0 documentation »

 
      


    


    
      
          
            
  
Overview


Face doesn’t try to be a full featured ORM, he just does try to be good at gettig datas from the DB as you asked him to do.
He is enough modular and configurable that’s why he will adapt to your code, even if your code changes in the future.


The few lines bellow explain Face’s philosophy



What Face does



		Face is an ORM for Sql using php5.4 traits


		Face is adaptable to your code


		Face is easy to configure and easy to use


		Face retrieves your data from the DB, including join and other sql statements


		Face provides an user friendly API for sql that is easy to use and easy to understand


		Face also understands SQL like called FaceQL


		Face care about performances and tries to save the number of queries sent to the DB Server


		Face also tries to save resources and to be fast


		Face let you know what it does with a profiler








What Face does not



		Face doesn’t try to overload your code


		Face doesn’t want to be a full featured ORM that will do all the job


		Face doesn’t want to be a little ORM that only set datas into a StdClass


		Face doesn’t doesn’t try to put all your data and models under a complex layer of functionnalities


		Face doesn’t want load more datas that you asked him to do


		Face doesn’t try to hide you what he does


		Face doesn’t need you to put public properies, you may use protected or private properties








Why Face ?


Yes, there are already a bunch of ORM for PHP, but only a few are really ok.
Some of them try to do all the job, they become complexe and are pain for the resources consumption, also they are complexe to set up and they are definitively not adapted for little projects.
Some others are minimalistics, they are not greed for the server but they are so minimalistic that you still have a lot of work to do.
Also most of them want you to extend your entity classes with their one classes.



Face : neither a full and complexe AllInOne ORM, nor a minimalistic ORM that can’t join data together. Face uses faces to understand how your entities are done, faces are implemented by one and only one trait that once configured will give a face to your entity. Once your object has a face, Face ORM will be able to play with it. Your object wont have to inherit any EntityBaseClass.









          

      

      

    


    
        © Copyright 2013, Soufiane GHZAL.
      Created using Sphinx 1.3.5.
    

  

_static/up.png





_static/down.png





search.html


    
      Navigation


      
        		
          index


        		Face 1.0 documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2013, Soufiane GHZAL.
      Created using Sphinx 1.3.5.
    

  

installation/generation.html


    
      Navigation


      
        		
          index


        		Face 1.0 documentation »

 
      


    


    
      
          
            
  
Generation


The hardest work when you use an orm is to prepare the models that you have already prepared in your database.


Obviously Face is not an exception, you will have to map your model classes with your database.


We are aware that it is a repetitive work and that’s why we try to place a constant effort to avoid this work.


Face offers a tool that will generate your models for you : Face-Embryo [https://github.com/laemons/face-embryo].


Embryo will generate  some .php files for you and Face will use these php files.
In this way you can start a project even if you have only weak knowledge of Face. You just will have to know how to write queries.


We really encourage you to use Embryo. It will help to start your projects faster.



Note


For the moment Embryo only works with MySQL.





Note


If you are using one of our framework skeleton, then embryo is already embeded into the skeleton and ready for use. Please refer to the appropriate section





Install Embryo


Embryo installation was tested under Debian. You will maybe have to adapt the following to your distro/OS.


Before generating your models you need a mysql database ready for use. It means that all your table are ready and primary keys and foreign keys are present.


Now download or clone the sources from github : https://github.com/laemons/face-embryo at the root of your project


cd root/of/your/project
git clone https://github.com/laemons/face-embryo.git
// cd to ./face-embryo and run install composer dependancies









Generate from database


Embryo is ready, now create a directory named models at the root of your application.


You can to generate your models :


php face-embryo/embryo models -u user -p password -d database generate -o ./models






Replace “user” by the username of the database, “password” by the password of the user and “database” by the name of the database where your tables live.
The option “-o”  means “output”, it is the where the models will be generated.


After typing this command you will be prompted for “yes or no” everytime a foreign key exists.
In fact embryo needs to know if your relation is hasOne or hasMany. Most of time it will be “hasMany”, if so just leave blank and press enter or else write “n” and press enter.


You can check all has been generating : look at the models dir, you should have some .php files matching with your db tables.



Note


support for namespaces is under construction










          

      

      

    


    
        © Copyright 2013, Soufiane GHZAL.
      Created using Sphinx 1.3.5.
    

  

references/quickstart.html


    
      Navigation


      
        		
          index


        		Face 1.0 documentation »

 
      


    


    
      
          
            
  
Quick Start


Lets see how to use face. The below examples are just quick step to discover Face, they dont explain why or how it works.
TODO : detailled section


For these examples, we need a sql database. You may import the sample .sql file that we made just for you : TODO lemons.sql



Configure Face


You said configure ? Why ? Face doesn’t need any specific configuration.


It just will work with a PDO object and some entities that you configured for your DB.





Installation


Use composer with the package “face/face”: “dev-master”


For detailled informations : TODO : link to installation page





Creating your Entity


For this example we are going to play with a Tree object. This tree has an id and an age. That’s all.


Look at the Tree entity :


<?php
class Tree {

    protected $id;
    protected $age;

    public function getId() {
        return $this->id;
    }

    public function setId($id) {
        $this->id = $id;
    }


    use \Face\Traits\EntityFaceTrait;

    public static function __getEntityFace() {
        return [
            "elements"=>[
                "id"=>[
                    "identifier"=>true,
                    "sql"=>[
                        "isPrimary" => true
                    ]
                ],
                "age"=>[],
            ]

        ];
    }

}









Retrieve the entity from the Database


Let’s assume we have a mysql database with a table “tree” with 2 columns : “age” and “id” :


<?php

 // remove this line if Tree is loadable by autoloader
include "Tree.php";

// create a pdo object that will be able to connect to the database
// for new commers more informations at : http://fr2.php.net/manual/en/class.pdo.php
$pdo = new PDO('mysql:host=localhost;dbname=db-test', 'root', 'root');

// Create a query for Tree
$fQuery= Face\ORM::Query("Tree");
// execute the query and get the trees
$trees=  Face\ORM::execute($fQuery, $pdo)->getInstance("Tree");

foreach ($trees as $tree){
    echo "tree #".$tree->getId()." - age : ".$tree->getAge()."<br/>" ;

}






That’s all ? Yes that’s all, for a simple query like this, you only two lines in addition of the PDO instantiation and the foreach loop that displays datas !





Join elements together


A tree is cool, but alone it is sick, dont you prefer a lemon tree ?


Firstly update the Tree class : add lemons


<?php
class Tree {

    protected $id;
    protected $age;

    // Add some lemons (dont forget to add them to the face like shown bellow)
    protected $lemons=array();

    public function getId() {
        return $this->id;
    }

    public function getLemons() {
        return $this->lemons;
    }



    use \Face\Traits\EntityFaceTrait;

    public static function __getEntityFace() {
        return [
            "elements"=>[
                "id"=>[
                    "identifier"=>true,
                    "sql"=>[
                        "isPrimary" => true
                    ]
                ],
                "age"=>[],

                // Lemons also live in the face
                "lemons"=>[
                    "type"      => "entity",
                    "class"     => "Lemon",
                    "relation"  => "hasMany",
                    "relatedBy" => "tree",
                    "sql"   =>[
                        "join"  => ["id"=>"tree_id"]
                    ]
                ],


            ]

        ];
    }

}






Now we need to create the Lemon class :


class Lemon {

    public $id;
    public $tree_id;

    public $tree;

    public function getId() {
        return $this->id;
    }

    public function getTree_id() {
        return $this->tree_id;
    }

    public function getTree() {
        return $this->tree;
    }


    use \Face\Traits\EntityFaceTrait;

    public static function __getEntityFace() {
        return [
            "elements"=>[
                "id"=>[
                    "identifier"=>true,
                    "sql"=>[
                        "isPrimary" => true
                    ]
                ],
                "tree_id"=>[],
                "tree"=>[
                    "type"      => "entity",
                    "class"     =>  "Tree",
                    "relatedBy" => "lemons",
                    "sql"   =>[
                        "join"  => ["tree_id"=>"id"]
                    ]
                ],
            ]

        ];
    }

}






Query the lemons and the tree together !
Oh and wait, we also only want Trees that have less than 6 years


<?php

 // remove these 2 lines if Tree and Lemon aro loadable by autoloader
include "Tree.php";
include "Lemon.php";

// create a pdo object that will be able to connect to the database
$pdo = new PDO('mysql:host=localhost;dbname=db-test', 'root', 'root');

// Create a query for Tree object
$fQuery= Face\ORM::Query("Tree");
// join lemons
$fQuery->join("lemons")
       ->where("~age < 6");

// execute the query
$trees= Face\ORM::execute($fQuery, $pdo)->getInstance("Tree");

// check the results
foreach ($trees as $tree){
    echo "tree #".$tree->getId()." - age : ".$tree->getAge()."<br/>" ;

    foreach ($tree->getLemons() as $lemon){
        echo " | lemon #". $lemon->getId()."<br/>" ;
    }

}






As you see, when your lemon is configured you just have one line to add that joins the lemons and the trees together, and one line to explain the where clause








          

      

      

    


    
        © Copyright 2013, Soufiane GHZAL.
      Created using Sphinx 1.3.5.
    

  

installation/stand_alone.html


    
      Navigation


      
        		
          index


        		Face 1.0 documentation »

 
      


    


    
      
          
            
  
Standalone installation


This section explains how to install Face in a new project.


If can also start a project with a framework from one of our skeleton project : check the framework integration page.



Requirements



		PHP 5.4 or later


		A mysql database. For the moment only MySQL is supported. PostgreSQL and SQLite will be supported in next versions.


		PDO that is natively available in standard PHP 5.4 or later








Installation


Face uses composer [http://getcomposer.org/]. you can use the package face/face





Starting your project


Now you have to generate your models for the project. Jump to the  models generations section.








          

      

      

    


    
        © Copyright 2013, Soufiane GHZAL.
      Created using Sphinx 1.3.5.
    

  

futureindex.html


    
      Navigation


      
        		
          index


        		Face 1.0 documentation »

 
      


    


    
      
          
            
  
Face Documentation




		Examples of models
		A table with no references


		Add a has many reference


		Add a many to many relation

















          

      

      

    


    
        © Copyright 2013, Soufiane GHZAL.
      Created using Sphinx 1.3.5.
    

  

model-definitions/examples.html


    
      Navigation


      
        		
          index


        		Face 1.0 documentation »

 
      


    


    
      
          
            
  
Examples of models



Note


For readability purposes all following classes have public properties, but you are free to use protected properties
with getter/setter





A table with no references


The following example defines a entity named user linked to the database table user and to the php class User




		user Definition[

    "name"     => "user",
    "sqlTable" => "user",
    "class"    => "User",

    "elements" => [

        "id" => [
            "identifier" => true,
            "sql"  => [
                "columnName" => "id",
                "isPrimary"  => "true",
            ]
        ],

        "firstname" => [
            "sql"  => [
                "columnName" => "firstname"
            ]
        ],

        "lastname" => [
            "sql"  => [
                "columnName" => "lastname",
            ]
        ],

        "email" => [
            "sql"  => [
                "columnName" => "email",
            ]
        ],

    ]

]









		User ClassClass User {

    public $id;
    public $firstname;
    public $lastname;
    public $email;

}









		Query Example// find all the users
$query = User::selectBuilder();

$users = Face\ORM::execute($query, $pdo);

foreach($users as $user){

    echo $user->id . ' ' . $user->firstname . ' ' . $user->lastname;

}

















Add a has many reference


We will add some articles to the user




		user Definition[

    "name"     => "user",
    "sqlTable" => "user",
    "class"    => "User",

    "elements" => [

        "id" => [
            "identifier" => true,
            "sql"  => [
                "columnName" => "id",
                "isPrimary"  => "true"
            ]
        ],
        "firstname" => [
            "sql"  => [
                "columnName" => "firstname"
            ]
        ],
        "lastname" => [
            "sql"  => [
                "columnName" => "lastname",
            ]
        ],
        "email" => [
            "sql"  => [
                "columnName" => "email",
            ]
        ],


        "Articles" => [

            "entity"    => "article",
            "relation"  => "hasMany",
            "relatedBy" => "user",

            "sql" => [
                "join"  => ["id"=>"user_id"],
            ]

        ],

    ]

]









		article Definition[

    "name"     => "article",
    "sqlTable" => "article",
    "class"    => "Article",

    "elements" => [

        "id" => [
            "identifier" => true,
            "sql"  => [
                "columnName" => "id",
                "isPrimary"  => "true"
            ]
        ],
        "title" => [
            "sql"  => [
                "columnName" => "title"
            ]
        ],
        "content" => [
            "sql"  => [
                "columnName" => "content",
            ]
        ],

        "User" => [

            "entity"    => "user",
            "relation"  => "belongsTo",
            "relatedBy" => "Articles",

            "sql" => [
                "join"  => ["user_id"=>"id"],
            ]

        ],

    ]

]









		User ClassClass User {

    public $id;
    public $firstname;
    public $lastname;
    public $email;

    public $Articles;

}









		Article ClassClass Article {

    public $id;
    public $title;
    public $content;

    public $User;

}









		Query Example// find all the users and their articles
$query = User::selectBuilder()
    ->join("Articles");

$users = Face\ORM::execute($query, $pdo);

foreach($users as $user){

    echo $user->id . ' ' . $user->firstname . ' ' . $user->lastname;

    foreach($user->Articles as $article){
        echo $article->id . ' ' . $article->title;
    }

}

















Add a many to many relation


Some users have liked some article




		user Definition[

    "name"     => "user",
    "sqlTable" => "user",
    "class"    => "User",

    "elements" => [

        "id" => [
            "identifier" => true,
            "sql"  => [
                "columnName" => "id",
                "isPrimary"  => "true"
            ]
        ],
        "firstname" => [
            "sql"  => [
                "columnName" => "firstname"
            ]
        ],
        "lastname" => [
            "sql"  => [
                "columnName" => "lastname",
            ]
        ],
        "email" => [
            "sql"  => [
                "columnName" => "email",
            ]
        ],


        "Articles" => [

            "entity"    => "article",
            "relation"  => "hasMany",
            "relatedBy" => "user",

            "sql" => [
                "join"  => ["id"=>"user_id"],
            ]

        ],

        "LikedArticles" => [

            "entity"   => "article",
            "relation" => "hasManyThrough",
            "relatedBy"=> "Likers",

            "sql" => [

                "join" => ["id" => "user_id"],
                "throughTable" => "user_likes_article"

            ]
        ]

    ]

]









		article Definition[

    "name"     => "article",
    "sqlTable" => "article",
    "class"    => "Article",

    "elements" => [

        "id" => [
            "identifier" => true,
            "sql"  => [
                "columnName" => "id",
                "isPrimary"  => "true"
            ]
        ],
        "title" => [
            "sql"  => [
                "columnName" => "title"
            ]
        ],
        "content" => [
            "sql"  => [
                "columnName" => "content",
            ]
        ],

        "User" => [

            "entity"    => "user",
            "relation"  => "belongsTo",
            "relatedBy" => "Articles",

            "sql" => [
                "join"  => ["user_id"=>"id"],
            ]

        ],

        "Likers" => [

            "entity"   => "user",
            "relation" => "hasManyThrough",
            "relatedBy"=> "LikedArticles",

            "sql" => [

                "join" => ["id" => "article_id"],
                "throughTable" => "user_likes_article"

            ]
        ]

    ]

]









		User ClassClass User {

    public $id;
    public $firstname;
    public $lastname;
    public $email;

    public $Articles;

    public $LikedArticles;

    public function likes($articleId){

        foreach ($this->LikedArticles as $likedArticle) {
            if ($likedArticle->id == $articleId) {
                return true;
            }
        }

        return false;

    }

}









		Article ClassClass Article {

    public $id;
    public $title;
    public $content;

    public $User;

}









		Query Example// Check if the user likes a given article
$query = User::selectBuilder()
    ->join("Articles")
    ->where("user.id=:user_id");

$users = Face\ORM::execute($query, $pdo);

$user = $users[0];

echo $user->likes(2) ? "He likes" : "He doesn't like";




















          

      

      

    


    
        © Copyright 2013, Soufiane GHZAL.
      Created using Sphinx 1.3.5.
    

  

getting_started/getting_started.html


    
      Navigation


      
        		
          index


        		Face 1.0 documentation »

 
      


    


    
      
          
            
  
Getting Started


This getting started will learn you the very basics of Face.
It’s nothing more than a starting point that will show you how the library works by the examples.



Requirements


This guide requires you to have the minimum knowledge of a relational database. In addition you should prepare :




		A mysql database (for the early development, Face only supports mysql, however more are planned thanks to the flexibility of PDO)


		A set of sql schema ready in the database : schema.sql.


		The Face library ready for use (check the installation guide)












First Step : Get data from the database


The schema required for this guide is the following :


[image: ../_images/getting_started_schema.png]
In this first step we are going to query some articles from the database



Create a model for articles


We will create our first class aimed to act as a model for the article table :


<php

class Article {

  use \Face\Traits\EntityFaceTrait;

  protected $id;

  protected $title;
  protected $articleContent;
  protected $authorId;


  public function getId(){
   return $this->id;
  }

  public function getTitle(){
   return $this->title;
  }

  public function getArticleContent(){
   return $this->articleContent;
  }

  public function getAuthorId(){
   return $this->authorId;
  }

  public function setId($id){
   $this->id = $id;
  }

  public function getTitle($title){
   $this->title = $title;
  }

  public function getArticleContent($articleContent){
   $this->articleContent = $articleContent;
  }

  public function getAuthorId($authorId){
   $this->authorId = $authorId;
  }
}







Note


Actually the model is basically an exact representation of the database with one property per database column
Writing them may be very annoying. We will see latter how to generate them automatically





Note


As you can see we use the trait \Face\Traits\EntityFaceTrait. This trait is the base of every Face entity.
It brings custom and ready to use methods to deal with the library.




Now our model is ready, but we still need to map it with the database. Let’s create the model definition.


Create a file named for instance models.php with the following content :


<?php

 return [
    [
       "name"=> "article",
       "class"=> "Artcle",
       "sqlTable"=>"article",

       "elements"=>[

           "id"=>[
               "identifier"=>true,
               "sql"=>[
                   "columnName"=> "id",
                   "isPrimary" => true
               ]
           ],

           "title"=>[
               "identifier"=>true,
               "sql"=>[
                   "columnName"=> "title"
               ]
           ],

           "articleContent"=>[
               "identifier"=>true,
               "sql"=>[
                   "columnName"=> "articleContent"
               ]
           ],

           "authorId"=>[
               "identifier"=>true,
               "sql"=>[
                   "columnName"=> "authorId"
               ]
           ],

       ]
    ]
 ];






We are done ! Our model and our mapping are ready. We are ready to deal with the database now.





Query Articles from the database



Note


In this section we will use the model class we just created. This class needs to be available in your application.
If you are not familiar with autoloading, please take a look at the dedicated guide : loading models [TODO LINK]












          

      

      

    


    
        © Copyright 2013, Soufiane GHZAL.
      Created using Sphinx 1.3.5.
    

  

usage/core.html


    
      Navigation


      
        		
          index


        		Face 1.0 documentation »

 
      


    


    
      
          
            
  
Face Core


Although Face offers a generator to start your project, it is important to know how it works.


This section describes the core of face.



Class and Database


Face is an ORM, it will map Classes with Database Tables and Properties with Columns


Begin the example with the following : in the database we have a Table named tree. This table has 2 columns :
id and age ; id is an auto-incremented primary key and age is simply the age of the tree.


We will have the following class matching to the db :


<?php

class Tree{

    protected $id;
    protected $age;

    /** getters and setters

    ....

    */


}






This is a basic Tree class with properties matching to the database table.



Map your class with a table


Now we have to say to face how to read the tree class : we will use the  trait EntityFaceTrait, it’s what allows face to access to your class.
When you use this trait you will have to implement the method __getEntityFace.


See :


<?php

class Tree{

    protected $id;
    protected $age;

    /** getters and setters

    ....

    */

    // we use the EntityFaceTrait, this is the core of face.
    // without it Face cant work with the class.
    use \Face\Traits\EntityFaceTrait;

    // when we sue the EntityFaceTrait, then we have to implement the following function
    public static function __getEntityFace() {
        return [
            "sqlTable"=>"tree"
        ];
    }

}






The method __getEntityFace returns an array. This array explains your class. As you can see we specified the sqlTable key with the value tree.
It means that the class is mapped with the table tree.





Map your properties with columns


At this point, face knows that the tree class is mapped with the sql table “tree”. But any column is mapped. Indeed we also have to explain which columns are mapped.


The following example shows how you can map the properties with the columns :


<?php

class Tree{

    protected $id;
    protected $age;

    /** getters and setters

    ....

    */

    use \Face\Traits\EntityFaceTrait;

    public static function __getEntityFace() {
        return [
            "sqlTable"=>"tree",

            // Add some elements
            "elements"=>[

                "id"=>[
                    "property"=>"id",
                    "sql"=>[
                        "columnName" => "id",
                        "isPrimary"  => true,
                    ],
                ],

                "age"=>[
                    "property"=>"age",
                    "sql"=>[
                        "columnName" => "age",
                    ],
                ]

            ]
        ];
    }

}






We added the key elements. This is the list of mapped properties.


There is a few things to know :




		Each element must match with a valid property of the class.


		Each element has an unique name. The name is specified by the key.


		Element name has the same naming conventions that variable : it must begins by a letter or an underscore and con contain only letters number or underscore












Foreign Keys


Obviously Face supports very well your foreign keys. That’s why he was born.


Let’s use a second table in the database : the lemon table. This table has 2 columns : id and tree_id. Then we will have the following class :


<?php

class Lemon {

    protected $id;
    protected $tree_id;

    /** getters and setters

    ....

    */

    use \Face\Traits\EntityFaceTrait;

    public static function __getEntityFace() {
        return [

            "sqlTable"=>"lemon",

            "elements"=>[
                "id"=>[
                    "sql"=>[
                        "isPrimary" => true
                    ]
                ],
                "tree_id",
        ];
    }

}






In this example you may have noticed that we only specified  tree_id as a string.


It is not a mistake, this is convenient shortcuts.


It is identical to :


"id"=>[
    "property"=>"id",
    "sql"=>[
        "columnName" => "id",
        "isPrimary" => true,
    ]
],
"tree_id"[
    "property"=>"tree_id",
    "sql"=>[
        "columnName" => "tree_id",
    ]
],






Now we have a Lemon class and we want to link it to the Tree.


We have to modify the Tree class by adding a Lemons property then we will say to face how to join the classes together.


<?php

class Tree{

    protected $id;
    protected $age;

    // ADD A LEMON PROPERTY
    // (contrary to the usual naming convention, we capitalize the first letter of a variable, that's allow us to now if it is a SQL column or a related entity )
    protected $Lemons;

    /** getters and setters

    ....

    */

    use \Face\Traits\EntityFaceTrait;

    public static function __getEntityFace() {
        return [

            "sqlTable"=>"tree",

            "elements"=>[

                "id"=>[
                    "sql"=>[
                        "isPrimary"  => true,
                    ],
                ],

                "age",

                // ADD THE LEMON ELEMENT
                "Lemons"=>[
                    "class"     => "Lemon",
                    "relation"  => "hasMany",
                    "sql"   =>[
                        "join"  => ["id"=>"tree_id"]
                    ]
                ]

            ]
        ];
    }

}






We added the Lemons elements. We can explain the array by the following :


“Tree has an element named ‘Lemons’ that references to the class ‘Lemon’. Each tree hasMany ‘Lemons’ and we can join them with the columns ‘tree.id’ and ‘lemon.tree_id’.”


We can retrieve trees from the db and join Lemons.





Reverse the relation : find the parent from a child !


From now we can do the following :


<?php

// we have retrieved some trees from the db. $tree is one of them
$tree->getLemons();






But in some cases it is really convenient to be able to do this :


<?php

// we would like to get the parent from the child
$lemon->getTree();






This is real advantage of Face, it can do relations in both directions  in the same time : Parent => Children & Child => Parent


How to proceed ?


It’s very straightforward ! We have to add a Tree property on the Lemon (like we did add the lemons property on the tree):


<?php

class Lemon {

    protected $id;
    protected $tree_id;

    // ADD THE PROPERTY
    protected $Tree

    /** getters and setters

    ....

    */

    use \Face\Traits\EntityFaceTrait;

    public static function __getEntityFace() {
        return [

            "sqlTable"=>"lemon",

            "elements"=>[
                "id"=>[
                    "sql"=>[
                        "isPrimary" => true
                    ]
                ],

                "tree_id",

                // ADD THE TREE ELEMENT
                "Tree"=>[
                    "class"     => "Tree",
                    "relatedBy" => "Lemons",
                    "relation"  => "belongsTo",
                    "sql"   => [
                        "join"  => ["tree_id"=>"id"]
                    ]
                ]
        ];
    }

}






We just added a Tree element.


You can see a new key named related. This key allows to explain which element of the other class refers to this one.


In this example we are saying that the class Lemon is referenced on the class Tree by the element named “Lemons”.


Now we are going to do the same on the tree. Add the key relatedBy on the Lemons element :


"Lemons"=>[
    "class"     => "Lemon",
    "relatedBy" => "Tree",
    "relation"  => "hasMany",
    "sql"   =>[
        "join"  => ["id"=>"tree_id"]
    ]
]














          

      

      

    


    
        © Copyright 2013, Soufiane GHZAL.
      Created using Sphinx 1.3.5.
    

  

_images/lemon-model.png
TN
longth INT
@ tree_id INT

TN
@ lomon id INT
 fortd VARCHAR(#S)






usage/faceql.html


    
      Navigation


      
        		
          index


        		Face 1.0 documentation »

 
      


    


    
      
          
            
  
FaceQL


Face gives an easy way to query the database with the some QueryBuilders (for instance the SelectBuilder).


This builder is helpful for all basic operations, but it is limited by the api and some cases may not be covered by the QueryBuilder.


That’s why Face provides an SQL-like language to query you database like if you were using SQL.



Introduction


FaceQL is really similar to SQL. The major part of the query is just basic SQL. But when you write a FaceQL query,
the FaceQL parser needs to know what is the base model used for the query.


Also FaceQL still uses the one-face-centralized model,
then instead of using table names and column names you will use element names to name the columns and tables.


For instance the following queries are similar :


<?php

$sql = "SELECT * FROM tree WHERE tree.age>:age";

$queryBuilder = Tree::faceQueryBuilder()->where("~age>:age");

$faceQL = "SELECT::* FROM::Tree WHERE ~age>:age";






The main difference is that the first one ($sql) is not understandable and not processable by the face hydrater.


The main advantage of FaceQL versus the QueryBuilder is that FaceQL offers 100% flexibility and it covers most of the common operations


Example of a more complex FaceQL query :


<?php

$sql =
   "SELECT * FROM tree "
  ."JOIN lemon ON lemon.tree_id = tree.id "
  ."WHERE lemon.mature = 1"
  ."GROUP BY lemon.id "
  ."HAVING count(lemon.id) > 5";

$faceQL =
   "SELECT::* FROM::Tree "
  ."JOIN::lemons "
  ."WHERE ~lemons.mature = 1"
  ."GROUP BY ~lemons.id "
  ."HAVING count(~lemons.id) > 5";









Using the parser


Obviously you have to pass your FaceQL query through a parser.


This parser will return a QueryString object that is executable exactly like a query built from the SelectBuilder :


<?php

$fql=\Face\Sql\Query\FaceQL::parse(

    "SELECT::* FROM::Tree ".
    "JOIN::lemons ".
    "WHERE ~id=:id"

)->bindValue("id",1,PDO::PARAM_INT);


$trees = Face\ORM::execute($fql, $pdo);

foreach($trees as $tree){
    // ... do some stuffs
}









UPDATE DELETE INSERT


Right now FaceQL is being tested, a kind of alpha test.


Update delete and insert will be provided in a very few times.








          

      

      

    


    
        © Copyright 2013, Soufiane GHZAL.
      Created using Sphinx 1.3.5.
    

  

usage/basics.html


    
      Navigation


      
        		
          index


        		Face 1.0 documentation »

 
      


    


    
      
          
            
  
Basic Operations


This section treats of the basical CRUD operations (create read update delete).



Note


Face is under early beta phase and only reading (Select) are supported.





Introduction


All the examples use the following model :


[image: ../_images/lemon-model.png]
A sql script including some data identical to the one used for the following examples is available here : lemon-model.sql.


We consider that you know how to generate the models for your project. If no, then have a look at the models generations section


All the following examples include the $pdo variable to be already instantiated :


<?php

// All access to the database are made through a PDO object
$pdo = new PDO('mysql:host=localhost;dbname=lemon-test', 'root', 'root');









Select


If your database and your models are ready, lets select some datas.



Simple Select


<?php

// create a query to find all trees in the database
$fQuery = Tree::faceQueryBuilder();

// execute the query through the pdo object
$trees = Face\ORM::execute($fQuery, $pdo);

// you can count the number of results as a regular array
$numberOfTrees = count($trees);

// you can also iterate over the trees
foreach($trees as $tree){

    // you can get the age of the tree
    echo $tree->getAge() . "years - ";

}









Select with where clause


Face offers a SQL like way to write where clauses. You just have to add a tilde [~] for Face to understand that you want him to treat the following expression.


<?php

// create a query to find all trees that have 5 years or more
$fQuery = Tree::faceQueryBuilder();
$fQuery->where("~age >= :age");

// you can call bind values like with pdo
$fQuery->bindValue(":age" , 5 , PDO::PARAM_INT);

// execute the query through the pdo object
$trees = Face\ORM::execute($fQuery, $pdo);

foreach($trees as $tree){
    echo $tree->getAge() . "years - ";
}









Select and Join entities


Face uses path for navigation over the properties. All is explained in the core section


You can join elements just by their path. Usually it will be the property name of the related Class.


<?php

// create a query to find all trees and join the lemons
$fQuery = Tree::faceQueryBuilder();
$fQuery->join("Lemon");

// execute the query through the pdo object
$trees = Face\ORM::execute($fQuery, $pdo);


// you still can count the number of trees
$numberOfTrees = count($trees);

// you can also get all the lemons
$allLemons = $trees->getInstancesByClass("Lemon");









Select + Join + Where


Once you have joined entities, you can do deeper where clauses. See :


<?php

$fQuery = Tree::faceQueryBuilder()
    ->join("Lemon")
    ->join("Leaf")
    ->join("Lemon.Seed")
    // we only want the
    ->where("~age >= :age  AND  ~Lemon.Seed.fertil=1 ");
    ->bindValue(":age", 5 , PDO::PARAM_INT);

// execute the query through the pdo object
$trees = Face\ORM::execute($fQuery, $pdo);














          

      

      

    


    
        © Copyright 2013, Soufiane GHZAL.
      Created using Sphinx 1.3.5.
    

  

_images/getting_started_schema.png
Vit
INT

ke VARGHAR(45) e
 frstname VARGHAR(45)

m
Vit
P

O lasiname VARGHAR(45)

Indexes






